Edge effects control helical wrapping of carbon nanotubes by polysaccharides.
نویسندگان
چکیده
Carbon nanotubes (CNTs) wrapped by polysaccharide chains via noncovalent interactions have been shown to be soluble and dispersed in aqueous environments, and have several potential chemical and biomedical applications. The wrapping mechanism, in particular the role played by the end of the CNT, remains, however, unknown. In this work, a hybrid complex formed by an amylose (AMYL) chain and a single-walled carbon nanotube (SWNT) has been examined by means of atomistic molecular dynamics (MD) simulations to assess its propensity toward self-assembly, alongside its structural characteristics in water. To explore edge effects, the middle and end regions of the SWNT have been chosen as two initial wrapping sites, to which two relative orientations have been assigned, i.e. parallel and orthogonal. The present results prove that AMYL can wrap spontaneously around the tubular surface, starting from the end of the SWNT and driven by both favorable van der Waals attraction and hydrophobic interactions, and resulting in a perfectly compact, helical conformation stabilized by an interlaced hydrogen-bond network. Principal component analysis carried out over the MD trajectories reveals that stepwise burial of hydrophobic faces of pyranose rings controlled by hydrophobic interactions is a key step in the formation of the helix. Conversely, if wrapping proceeds from the middle of the SWNT, self-organization into a helical structure is not observed due to strong van der Waals attractions preventing the hydrophobic faces of the AMYL chain generating enough contacts with the tubular surface.
منابع مشابه
Heat and light dual switching of a single-walled carbon nanotube/thermo-responsive helical polysaccharide complex: a new responsive system applicable to photodynamic therapy.
A thermo- and light-responsive system consisting of single-walled carbon nanotube and helical polysaccharide modified with poly(N-isopropylacrylamide) side-chains has been developed through supramolecular polymer wrapping. Coagulation of the complex can be induced by the external stimuli, which leads to a catch-and-release action of a porphyrin derivative.
متن کاملConformational behavior of polymers adsorbed on nanotubes.
The importance of hydrophobic interactions in determining polymer adsorption and wrapping of carbon nanotubes is still under debate. In this work, we concentrate on the effect of short-ranged weakly attractive hydrophobic interactions between polymers and nanotubes (modeled as an infinitely long and smooth cylindrical surface), neglecting all other interactions apart for chain flexibility. Usin...
متن کاملSolubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube.
Carbon nanotubes coated with alginic acid (AA) through noncovalent functionalization have been shown to be soluble and dispersed in water. In the present contribution, all-atom molecular dynamics simulations have been performed to probe the self-assembly mechanism that underlies the formation of complexes by AA and a single-walled carbon nanotube (SWCNT), both in the gas phase and in an aqueous...
متن کاملDislocation onset and nearly axial glide in carbon nanotubes under torsion.
The torsional plastic response of single-walled carbon nanotubes is studied with tight-binding objective molecular dynamics. In contrast with plasticity under elongation and bending, a torsionally deformed carbon nanotube can slip along a nearly axial helical path, which introduces a distinct (+1,-1) change in wrapping indexes. The low energy realization occurs without loss in mass via nucleati...
متن کاملSynthesis of carbon nano structures on Fe/Cu/AI and Al/Steel by thermal chemical vapour deposition method
Using C2H2, 112 and As gases at 550'C, carbon nanotubes were fabricated on the surfaces of twosubstrates coated by nano thin layers of metal catalysts by DC magnetron sputtering. AYStamless steel andFe/CteAl, by thermal chemical vapor deposition (TCVD) The surface properties of the substrates wereparticularly investigated, and the effect of treatment of the substrates on the CNT's growth is cri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 8 شماره
صفحات -
تاریخ انتشار 2012